
Abstract. A new method for the evaluation of one- and
two-centre magnetic and electric multipole integrals for
Slater-type functions is presented. The method is strictly
analytical in that no approximations of any kind are
involved. Two simple functions, Iaug

1 and Iaug
2 , are

introduced, which employ only functions that are well
known in electronic structure theory. With the use of
augmentation exponents these functions apply to mul-
tipole integrals as well as other one-electron integrals,
such as nuclear attraction integrals. The proposed
method includes the analytic determination of deriva-
tives of the integrals with respect to atomic displace-
ments. Some illustrative test calculations are presented
and compared to results from the literature.

Key words: Slater-type orbitals ± Electric multipole ±
Magnetic multipole ± Molecular integrals ± Derivatives

1 Introduction

For the theoretical determination of static or transition
multipole moments it is necessary to represent the
appropriate operators in a given basis, irrespective of
the quantum chemical model used. In time-independent
theory the basis is usually composed of atomic orbitals.
The ``quality'' of the overall wave function depends
heavily on

1. The size of the basis set (minimal, double zeta, . . .).
2. Inclusion of property orbitals (di�use or polarisation

functions, Rydberg functions, etc.).
3. The functional form of the orbitals.

Slater-type orbitals (STOs) [1] model the radial part of
exact hydrogen-like atomic orbitals quite accurately but

lead to di�culties in the evaluation of many-centre
integrals. To overcome this problem, Boys [2] introduced
Gaussian-type orbitals (GTOs). GTOs su�er from their
unphysical behaviour close to and far away from the
nucleus. STOs are still used in most semiempirical
methods, usually as minimal valence sets, sometimes
including d functions [3, 4]. In ab intio theory, GTOs are
now widely established, except for atomic ab intio
calculations which often employ STO bases (see, e.g.
[5±7]) and some benchmark STO calculations on small
molecules [8±11]. A comparison of STO and GTO bases
of various size showed that a GTO basis needs about
twice the size of a STO basis to obtain comparable
accuracy [9, 10]. Thus STO bases are still very attractive.

Some classical work on one-electron integrals over
STOs can be found in Refs. [12±15]. A variety of ap-
proaches for the evaluation of molecular two-electron
multicentre integrals in STO bases also exists for
example one-centre expansions [16±18], recurrence
schemes [19±23], integral transformation methods [24,
25], and other methods [11, 26±29].

The present work deals with one-electron integrals
of the general operator xiyjzk rÿ1

ÿ �lrm (i; j; k � 0 and
l;m � 0; 1; r denotes the gradient operator) and with
derivatives of these integrals with respect to atomic
displacements. The most prominent operators of this
kind correspond to the electric and magnetic dipole
moment and to the electric quadrupole moment. These
quantities determine spectroscopic properties, such as
the oscillator strength or the natural or ®eld induced
rotatory strength [30]. The calculation of each of these
properties remains a challenging problem in theoretical
chemistry.

Augspurger [31] has studied an operator similar to
xiyjzk � rÿ1

ÿ �lrm for GTOs. McMurchie and Davidson
[32] have solved integrals containing spatial derivatives
of GTOs. Analytical expressions for electric dipole in-
tegrals and s- and pSTOs with principal quantum
numbers n � 1; . . . ; 5 were derived by Suzuki et al. [33].
Hug and Wagniere [34] calculated magnetic dipole in-
tegrals for 1s, 2s and 2p STOs. The ®rst general ap-
proach for the solution of magnetic two-centre integrals
with the origin ®xed in-between the two centres is due to
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Ichimura and Rauk [35]. Guseinov [36] expressed mag-
netic multipole integrals in terms of Ruedenberg's C
functions. Another approach is to calculate magnetic
dipole integrals numerically or to solve the integrals in a
GTO basis and project the results back onto the STO
basis [37]. The method proposed in this paper derived its
basic impact from two recent publications on STO in-
tegrals [38, 39]. Carbo and Besalu [38] investigated both
molecular one- and two-electron operators as well as
operators of the type xiyjzk. In a work specialised on
electric multipole operators, Zheng and Zerner [39]
proposed an analytic procedure using some ideas similar
to those of Carbo and Besalu.

To the best of our knowledge, no approaches for
analytic derivatives of electric and magnetic multipole
integrals have been published up to now.

2 Preliminaries

In the following derivations, we deal with Cartesian
monomials of the type xiyjzk, where x, y and z are
Cartesian coordinates and i, j and k are positive integers
or zero and we use the notation introduced in Ref. [39]

�i; j; k�P :� xi
P yj

P zk
P : �1�

P indicates the point in three-dimensional space to which
x, y and z refer. Details concerning the translational and
rotational behaviour of Cartesian monomials can be
found in Ref. [38, 39]. We will use the capital letters O, A
and B to denote the origin of the coordinate system and
two additional points in space. The coordinates of a
point A with respect to O are Ax, Ay and Az. Terms like xA,
yA, zA etc. denote coordinate functions with respect to A.

It has been shown that it is always possible to express
a real spherical harmonic centred in P in terms of
Cartesian monomials [11, 39, 40]:

rlYl;m �
X

i�j�k�l

ci;j;k�i; j; k�P : �2�

ci;j;k are appropriate real coe�cients. The sum runs over
all �i; j; k� with i� j� k � l. A STO [1] is de®ned as

vSTOn;l;m :�
�����������������
�2f�2n�1

�2n�!

s
rnÿ1 exp �ÿfr�Y l;m�h;/�

Substituting Eq. (2) we get

vSTOn;l;m �
�����������������
�2f�2n�1

�2n�!

s
rnÿlÿ1 exp �ÿfr�

�
X

i�j�k�l

ci;j;k�i; j; k� : �3�

Each vSTOn;l;m can be expressed as a linear combination of
unnormalised primitive STOs

v � rnÿlÿ1eÿfr�i; j; k� : �4�
We will use primitive STOs in all our derivations.

Electric multipole operators can be de®ned as [41]:

M̂electric
l;m :� ÿjej Yl;mrl �5�

Each electric multipole operator can be written as a
linear combination of Cartesian monomials �i; j; k�O. We
will therefore refer to �i; j; k�O as a primitive electric
operator. Each primitive electric operator is hermitian.

As long as we neglect any spin dependence, the
magnetic dipole operator is essentially the angular mo-
mentum operator, l̂. Beyond that, there is no generally
accepted de®nition of magnetic multipole operators [42,
43]. The most widely accepted de®nition [43, 44] contains
terms like

rbrc � � � rxl̂a � l̂arbrc � � � rx ; �6�
where the Greek indices denote Cartesian x, y or z
components. These operators can be reduced to linear
combinations of primitivemagnetic operators, �i; j; k�Or,
which are in general neither hermitian nor anti hermitian.
Equation (6) yields an anti hermitian formulation.

In the ®rst part of this paper we will solve integrals of
the types hvAj�i; j; k�OjvBi and hvAj�i; j; k�OrjvBi ana-
lytically for the one- and the two-centre cases. With
these integrals it is possible to calculate the matrix
representation of any electric and magnetic multipole
operator in a STO basis. Therefore, we refer to these
integrals as primitive electric and primitive magnetic
integrals, respectively. Later on, we will apply the same
ansatz to the evaluation of derivatives of these integrals
with respect to atomic displacements.

3 Results

3.1 One-centre integrals

In one-centre integrals hvaj and jvbi are located at A. For
the evaluation of the integral we use a spherical polar
coordinate system centred at A, with radial distance r,
azimuthal angle h and polar angle /. The primitive
electric operator �i; j; k�O is de®ned with respect to the
origin O. In order to express the primitive electric
operator �i; j; k�O in the polar coordinate system located
at A we write the vector PO which points from O to an
arbitrary point P as PO � A� rA, where A points from
O to A and rA points from A to P. Then we insert this
into the de®nition of �i; j; k�O and apply the binomial
theorem 3 times (cf. Ref. [38]). With the following
shorthand notation for the binomial sum (cf. the ``nested
summation symbol'' in Ref. [38])Xi;j;k
m;n;l

B
:�
Xi

m�0

Xj

n�0

Xk

l�0

i
m

� �
j
n

� �
k
l

� �
� � � � �7�

we obtain:

�i; j; k�O �
Xi;j;k
m;n;l

B
Aiÿm

x Ajÿn
y Akÿl

z rl�m�n

� cos�/�m cos�h�l sin�/�n sin�h�m�n : �8�
The primitive magnetic operators are obtained by
multiplying Eq. (8) by r expressed in spherical polar
coordinates. Two unnormalised primitive STOs centred
at A are obtained by transforming the de®nition of
Eq. (4) to spherical polar coordinates:
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va � rÿ1�ia�ja�kaÿla�na cos�/�ia cos�h�ka
� sin�/�ja sin�h�ia�ja exp�ÿfar�

vb � rÿ1�ib�jb�kbÿlb�nb cos�/�ib cos�h�kb
� sin�/�jb sin�h�ib�jb exp�ÿfbr� : �9�

By de®nition, ia;b � ja;b � ka;b ÿ la;b � 0 for STOs. As we
want the treatment of the integrals to be as general as
possible, we keep the full exponent of r as it appears in
Eq. [9].

3.1.1 �i; j; k�O integrals

The combination of Eqs. (8) and (9) leads to the following
formulation of a primitive electric one-centre integral:

I1 �hvaj�i; j; k�Ojvbi

�
Z1;p;2p

r;h;/�0

dr dh d/
Xi;j;k
m;n;l

B
Aiÿm

x Ajÿn
y Akÿl

z

� exp ÿ fa � fb� �r� � rl�m�n�T cos�/�m�I sin�/�n�J

� cos�h�l�K sin�h�1�m�n�I�J ; �10�
with I � ia � ib, J � ja � jb, K � ka � kb, L � la � lb,
N � na � nb and T � I � J � K � N ÿ L. The integral
separates into the well-known standard integrals R, F,
and G (Appendix 1):

I1�na; la; ia; ja; ka; i; j; k; nb; lb; ib; jb; kb; fa; fb;Ax;Ay ;Az�

:�N
Xk;i;j
l;m;n

B
Aiÿm

x Ajÿn
y Akÿl

z

�R T � l� m� n; fa � fb� �
�F�I � m; J � n�
� G�K � l; 1� I � J � m� n� ; �11�

where N is the usual normalisation factor. Equation 11
di�ers from the corresponding equation in the treatment
of Zheng and Zerner [39] only in that it does need master
formulae. Their one-centre results are special cases of
Eq. (11).

3.1.2 �i; j; k�Or integrals

To treat primitive magnetic integrals we ®rst introduce
another shorthand notation:Zp
R �

Z1;p;2p
r;h;/�0

dr dh d/
Xi;j;k
m;n;l

B
Aiÿm

x Ajÿn
y Akÿl

z

� exp�ÿ fa � fb� �r� � . . . �12�
A primitive magnetic integral then reads:

hvaj�i; j; k�Orxjvbi

� ib

Zp
Rrÿ1�l�m�n�T cos�/�mÿ1�I sin�/�n�J

� cos�h�l�K sin�h�m�n�I�J � �nb ÿ lb ÿ 1�

�
Zp
Rrÿ1�l�m�n�T cos�/�1�m�I sin�/�n�J

� cos�h�l�K sin�h�2�m�n�I�J

ÿ fb

Zp
Rrl�m�n�T cos�/�1�m�I sin�/�n�J

� cos�h�l�K sin�h�2�m�n�I�J : �13�

Similar expressions are obtained for the y and z
components of the primitive magnetic operator. All the
integrals that appear in Eq. (13) di�er from those
appearing in Eq. (10) only by some of the exponents
of r, cos�/�, sin�/� cos�h� and sin�h�. This calls for a
generalisation of Eq. (11):

Iaug
1 �na; la; ia; ja; ka; i; j; k; nb; lb; ib; jb; kb;

fa; fb;Ax;Ay ;Az; r�; f�1 ; f
�
2 ; g

�
1 ; g

�
2 �

�N
Xk;i;j
l;m;n

B
Aiÿm

x Ajÿn
y Akÿl

z

�R r� � T � l� m� n; fa � fb� �
�F�f�1 � I � m; f�2 � J � n�
� G�g�1 � K � l; g�2 � 1� I � J � m� n� : �14�

We call the integers r�, f�1 , f�2 , g�1 and g�2 augmentation
exponents (AE). f�1 � 2, for example, means that cos�/�
has to be taken to the �I � m� 2�th power instead of to
the �I � m�th power in which it appears in Eq. (10).
Equation (14) is valid for all choices of AEs which do
not lead to negative exponents. The range of valid values
is given in the third column of Table 1. With the concept
of AEs our approach gains both applicability to a wide
range of integrals and simplicity in handling and
programming.

With Iaug
1 at hand, we are able to solve the integrals

in Eq. (13) by comparing the exponents of the integrands
with those in Eq. (10). We only give the values for the
AEs explicitly, using the same order as in Eq. (14).

hvaj�i; j; k�Orxjvbi
� ib Iaug

1 �. . . ;ÿ1;ÿ1; 0; 0;ÿ1�
� �nb ÿ lb ÿ 1� Iaug

1 �. . . ;ÿ1; 1; 0; 0; 1�
ÿ fb Iaug

1 �. . . ; 0; 1; 0; 0; 1� �15�

Table 1. Augmentation exponents (AE) for one-centre integrals

AE Term Validity range

r� r r� � ÿT
f�1 cos�/� f�1 � ÿI
f�2 sin�/� f�2 � ÿJ
g�1 cos�h� g�1 � ÿK
g�2 sin�h� g�2 � ÿ�I � J�
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hvaj�i; j; k�Ory jvbi
� jb Iaug

1 �. . . ;ÿ1; 0;ÿ1; 0;ÿ1�
� �nb ÿ lb ÿ 1� Iaug

1 �. . . ;ÿ1; 0; 1; 0; 1�
ÿ fb Iaug

1 �. . . ; 0; 0; 1; 0; 1� �16�
hvaj�i; j; k�Orzjvbi
� kb Iaug

1 �. . . ;ÿ1; 0; 0;ÿ1; 0�
� �nb ÿ lb ÿ 1� Iaug

1 �. . . ;ÿ1; 0; 0; 1; 0�
ÿ fb Iaug

1 �. . . ; 0; 0; 0; 1; 0� : �17�
Iaug

1 is valid in all the above equations. Consider
a ``worst case'': for h1sj�i; j; k�Orxj1si we have
I � J � K � 0 and g�2 is restricted to positive integers

or zero. The term Iaug
1 �. . . ;ÿ1;ÿ1; 0; 0; g�2 � ÿ1� in

Eq. (15) is not allowed; however this term is multiplied
by ib � 0 and we do not need to worry. By similar
arguments it is possible to show that all cases which lead
to negative exponents in Iaug

1 are zero.

3.2 Two-centre integrals

3.2.1 Coordinate system and operators

Two-centre integrals involve two STOs located at two
di�erent centres A and B and an operator which is
de®ned with respect to the origin O of the molecular
coordinate system (MCS). For a given molecule this
origin is chosen once, usually by symmetry arguments.
The MCS is a Cartesian coordinate system de®ned by a
tripod centred at the origin (Fig. 1a).

For the evaluation of an individual two-centre inte-
gral we start with the introduction of a local coordinate
system (LCS). For any pair of atoms a LCS is de®ned as
follows (Fig. 1b). At atom A a right-handed tripod is
centred with the z-axis pointing towards atom B. The
corresponding tripod in B is left handed. Its z-axis points
towards A. The x- and y-axes in A are parallel to the x-
and y-axes in B. The tripod for the operator located at O
is chosen parallel to the one in A. In such a LCS bi-focal
elliptical coordinates l, m and / can be de®ned as follows
[19, 38]:

xA � xB �
�����������������
ÿ1� l2

p �������������
1ÿ m2
p

R cos�/�
2

yA � yB �
�����������������
ÿ1� l2

p �������������
1ÿ m2
p

R sin�/�
2

�18�

zA � Rÿ zB � 1� lm� �R
2

;

R denotes the interatomic distance. Note that / is
positively oriented with respect to the tripod in A,
ranging from 0 to 2p. The coordinates m and l range
from ÿ1 to �1 and from �1 to �1, respectively. The
di�erential volume is ds � R

2

ÿ �3
l2 ÿ m2
ÿ �

dl dm d/. As
the labelling of the two atoms is arbitrary, there are
always two equivalent types of LCSs for any given
pair of atoms depending on which of the two atoms
is labelled ``A'' or ``B''. We have to ensure that this
arbitrariness does not a�ect our results.

In a way analogous to the one-centre case we ®nd for
the electric operator �i; j; k�O:

�i; j; k�O �
Xi;j;k
l;m;n

B R
2

� �l�m�n

Aiÿm
x Ajÿn

y Akÿl
z

� ÿ1� l2
ÿ �m

2�n
2 1� lm� �l 1ÿ m2

ÿ �m
2�n

2

� cos�/�m sin�/�n �19�
The gradient operator in elliptical bi-focal coordinates
can be obtained in a straightforward manner (Appendix
2). The STOs located at A and B are:

vA �
R
2

� �ÿ1ÿla�na

ÿ1� l2
ÿ �ia

2�ja
2 l� m� �ÿ1ÿla�na

� 1� lm� �ka�1ÿ m2�ia2�ja
2

� cos�/�ia sin�/�ja exp ÿ�l� m�Rfa
2

� �
�20�

vB �
R
2

� �ÿ1�nb

ÿ1� l2
ÿ �ib

2�
jb
2 lÿ m� �ÿ1ÿlb�nb

� 1ÿ lm� �kb 1ÿ m2
ÿ �ib

2�
jb
2

� cos�/�ib sin�/�jb exp ÿ�lÿ m�Rfb

2

� �
: �21�

3.2.2 �i; j; k�O integrals

We now have to solve the following integral (Similar
integrands appear, for example, in Refs. [14, 15, 38, 39]):

hvAj�i; j; k�OjvBi

�
Z2p;1;1

/�0;l�1;m�ÿ1

d/ dl dm
Xi;j;k
l;m;n

B R
2

� �1�T�l�m�n

� Aiÿm
x Ajÿn

y Akÿl
z exp�ÿqlÿ qsm�

� ÿ1� l2
ÿ �I�J�m�n

2 lÿ m� �ÿlb�nb

� l� m� �ÿla�na 1ÿ lm� �kb 1� lm� �ka�l

� 1ÿ m2
ÿ �I�J�m�n

2 cos�/�I�m sin�/�J�n ; �22�
Fig. 1a, b Coordinate systems employed for two centre integrals.
a Molecular coordinate system and b one possible local coordinate
system. See text for details
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where q � R
2 �fa � fb� and s � faÿfb

fa�fb
[12]. For later use we

de®ne the operator:Ze
R :�

Z2p;1;1
/�0;l�1;m�ÿ1

d/ dl dm
Xi;j;k
l;m;n

B R
2

� �l�m�n�T

� Aiÿm
x Ajÿn

y Akÿl
z eÿqlÿqsm � � � � �23�

The integration over the polar angle can be separated.
This part of the integral is solved by F �I � m; J � n�
(Appendix). F yields nonzero values only if both
arguments are even integers. The only terms in the
sum we need to consider are for those m and n which
leave I � m and J � m even. This ensures that any
bracketed term in Eq. (22) can be expanded binomially.
We arrive at a ®nite sum of separable integrals of the
form

R
dl dm mqlw exp �ÿql� exp �ÿqsm�, with integers q

and w. These integrals can be expressed by Mulliken's
A and B integrals [12]. A detailed discussion of their
properties can be found in Ref. [38]. Putting all terms
together, we arrive at

I2�na; la; ia; ja; ka; i; j; k; nb; lb; ib; jb; kb;R;
fa; fb;Ax;Ay ;Az�

:�NP�ka; kb�
Xnaÿla

a

BXnbÿlb

b

BXka;kb
ja;jb

BXi;j;k
i;k;g

BXg

�

B

�
XI�J�i�k

2

nm

BXI�J�i�k
2

nl

B R
2

� �1�T�g�i

Ax
iÿiAy

jÿkAz
ÿg�k

� ÿ1� �ÿb�jb�I�i�J�k
2 ÿlb�nbÿnl�nm � F �I � i; J � k�

� A�a� b� �� ja � jb � 2nl; q�
� B�ÿaÿ b� �� ja � jb ÿ L� N � 2nm; q; s� �24�

with

P�ka; kb� :� 1; g�ka� ^ g�kb� _ u�ka� ^ g�kb�
ÿ1; otherwise

�
: �25�

^ and _ denote the Boolean operators ``and'' and ``or''.
Equation (24) bears some resemblance to the Z function
introduced by Zheng and Zerner [39]. We postpone a
detailed comparison to the ``Discussion''. P�ka; kb� is a
phase correction that takes care of the left-handedness of
the tripod in B. Consider for example the overlap of two
pz orbitals at the atoms A and B, pointing to one
another. This overlap is surely negative. Without P the
function I2 would yield a positive value, because the
two z-axes in A and B are anti-parallel. In the example,
this is corrected by P�1; 1� � ÿ1. If P�ka; kb� is
neglegted in Eq. (24), the phase correction has to be
done during the transformation of the integral from the
LCS into the MCS.

3.2.3 �i; j; k�Or integrals

The calculation of the magnetic integrals is somewhat
more laborious, which is caused mainly by the
complicated structure of the gradient operator (Appen-
dix 2, Eq. A7). Because of the similarity of the
arguments with those in the previous section, we only

give a sketch of the derivation. After some rearrange-
ment, the integral for the �i; j; k�Orx operator reads

hvAj�i; j; k�O
@

@x
jvBi

� �nb ÿ lb ÿ 1�
Ze
R
�
l lÿ m� �ÿ2ÿlb�nb l� m� �ÿ1ÿla�na

� 1ÿ lm� �kb 1� lm� �ka

� 1ÿ m2
ÿ �1

2�I
2�J

2�m
2�n

2

� ÿ1� l2
ÿ �1

2�I
2�J

2�m
2�n

2

� cos�/�m�1�I sin�/�n�I

� m lÿ m� �ÿ2ÿlb�nb l� m� �ÿ1ÿla�na

� 1ÿ lm� �kb 1� lm� �ka

� 1ÿ m2
ÿ �1

2�I�J
2 �m

2�n
2

� ÿ1� l2
ÿ �1

2�I�J
2 �m

2�n
2

� cos�/�m�1�I sin�/�n�I
�

� �ib � jb�
Ze
R
�
l2 lÿ m� �ÿ1ÿlb�nb l� m� �ÿ1ÿla�na

� 1ÿ lm� �kb 1� lm� �ka

� 1ÿ m2
ÿ �1

2�I�J
2 �m

2�n
2

� ÿ1� l2
ÿ �ÿ1

2�I�J
2 �m

2�n
2

� cos�/�m�1�I sin�/�n�I

� m2 lÿ m� �ÿ1ÿlb�nb l� m� �ÿ1ÿla�na

� 1ÿ lm� �kb 1� lm� �ka

� 1ÿ m2
ÿ �ÿ1

2�I�J
2 �m

2�n
2

� ÿ1� l2
ÿ �1

2�I�J
2 �m

2�n
2

� cos�/�m�1�I sin�/�n�I
�

ÿ fb
R
2

Ze
R
�
l lÿ m� �ÿ1ÿlb�nb l� m� �ÿ1ÿla�na

� 1ÿ lm� �kb 1� lm� �ka

� 1ÿ m2
ÿ �1

2�I�J
2 �m

2�n
2

� ÿ1� l2
ÿ �1

2�I�J
2 �m

2�n
2

� cos�/�m�1�I sin�/�n�I

� m lÿ m� �ÿ1ÿlb�nb l� m� �ÿ1ÿla�na

� 1ÿ lm� �kb 1� lm� �ka

� 1ÿ m2
ÿ �1

2�I�J
2 �m

2�n
2

� ÿ1� l2
ÿ �1

2�I�J
2 �m

2�n
2

� cos�/�m�1�I sin�/�n�I
�
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� �ib ÿ jb�
Ze
R
�
l2 lÿ m� �ÿ1ÿlb�nb l� m� �ÿ1ÿla�na

� 1ÿ lm� �kb 1� lm� �ka

� 1ÿ m2
ÿ �ÿ1

2�I�J
2 �m

2�n
2

� ÿ1� l2
ÿ �ÿ1

2�I�J
2 �m

2�n
2

� cos�/�m�1�I sin�/�n�I

ÿ m2 lÿ m� �ÿ1ÿlb�nb l� m� �ÿ1ÿla�na

� 1ÿ lm� �kb 1� lm� �ka

� 1ÿ m2
ÿ �ÿ1

2�I�J
2 �m

2�n
2

� ÿ1� l2
ÿ �ÿ1

2�I�J
2 �m

2�n
2

� cos�/�m�1�I sin�/�n�I
�
: �26�

A corresponding expression is obtained for the
�i; j; k�Ory operator. The expression for the �i; j; k�Orz
operator contains nearly twice as many terms. By
comparing the individual terms in these integrals to
those appearing in Eq. (22) we arrive at an augmented
version of the function I2:

Iaug
2 �na; la; ia; ja; ka; i; j; k; nb; lb; ib; jb; kb;R; fa; fb;Ax;

Ay ;Az;R�; r�a ; r
�
b ; z

�
a ; z

�
b ; l

�; m�; l�2 ; m
�
2 ; s

�; c��

:� NP�ka; kb�
Xÿla�na�r�a

a

B Xnbÿlb�r�
b

b�0

BXka�z�a

ja

BXkb�z�
b

jb

B

�
Xi

i

BXj

k

BXk

g

BXg

�

B XI�J�i�k�m�
2

2

nm

B XI�J�i�k�m�
2

2

nl

B

� ÿ1� �nbÿlb�r�
b
ÿb�jb�

I�J�i�k�l�
2

2 ÿlb�nbÿnl�nm

� R
2

� �1�T�g�i�k�R�

Aiÿi
x Ajÿk

y Aÿg�k
z

� F �I � i� c�; J � k� s��
� A�a� b� �� ja � jb � 2nl � l�; q�
� B�ÿaÿ b� �� ja � jb ÿ L� N � 2nm � m�; q; s� :

�27�
The AEs are given in Table 2. In contrast to the Iaug

1
function, the AEs have to be chosen very carefully in
Iaug

2 . Because of their complicated interplay it is not
possible to derive validity ranges as simple as those given
in Table 1. Instead, some allowed con®gurations of AEs
are listed in Table 2. If, for example, s� is an odd and c�
is an even integer, l�2 and m�2 must both be odd.
Equation (27) is valid for all combinations of AEs used
in this work; however, if used for other integrals one has
to make sure that there are no terms with noninteger
exponents.

With Iaug
2 the integrals of the �i; j; k�Or operator can

be solved by inspection of the exponents appearing in
the integrands. Again, we specify only the augmentation
exponents.

hvAj�i; j; k�O
@

@x
jvBi

� ÿ1ÿ lb � nb� �
�
Iaug

2 �ÿ1;ÿ1;ÿ2; 0; 0; 0; 1; 1; 1; 0; 1�

�Iaug
2 �ÿ1;ÿ1;ÿ2; 0; 0; 1; 0; 1; 1; 0; 1�

�
� ib ÿ jb� �

�
Iaug

2 �ÿ1;ÿ1;ÿ1; 0; 0; 2; 0;ÿ1;ÿ1; 0; 1�

ÿIaug
2 �ÿ1;ÿ1;ÿ1; 0; 0; 0; 2;ÿ1;ÿ1; 0; 1�

�
� ib � jb� �

�
Iaug

2 �ÿ1;ÿ1;ÿ1; 0; 0; 0; 2; 1;ÿ1; 0; 1�

�Iaug
2 �ÿ1;ÿ1;ÿ1; 0; 0; 2; 0;ÿ1; 1; 0; 1�

�
ÿ fb

�
Iaug

2 �0;ÿ1;ÿ1; 0; 0; 0; 1; 1; 1; 0; 1�

�Iaug
2 �0;ÿ1;ÿ1; 0; 0; 1; 0; 1; 1; 0; 1�

�
; �28�

hvAj�i; j; k�O
@

@y
jvBi

� ÿ1ÿ lb � nb� �
�
Iaug

2 �ÿ1;ÿ1;ÿ2; 0; 0; 0; 1; 1; 1; 1; 0�

�Iaug
2 �ÿ1;ÿ1;ÿ2; 0; 0; 1; 0; 1; 1; 1; 0�

�
� ib ÿ jb� �

�
Iaug

2 �ÿ1;ÿ1;ÿ1; 0; 0; 0; 2;ÿ1;ÿ1; 1; 0�

ÿIaug
2 �ÿ1;ÿ1;ÿ1; 0; 0; 2; 0;ÿ1;ÿ1; 1; 0�

�
� ib � jb� �

�
Iaug

2 �ÿ1;ÿ1;ÿ1; 0; 0; 0; 2; 1;ÿ1; 1; 0�

�Iaug
2 �ÿ1;ÿ1;ÿ1; 0; 0; 2; 0;ÿ1; 1; 1; 0�

�
ÿ fb

�
Iaug

2 �0;ÿ1;ÿ1; 0; 0; 0; 1; 1; 1; 1; 0�

�Iaug
2 �0;ÿ1;ÿ1; 0; 0; 1; 0; 1; 1; 1; 0�

�
; �29�

hvAj�i; j; k�O
@

@z
jvBi

� ÿ1ÿ lb � nb� �
�
ÿIaug

2 �ÿ1;ÿ1;ÿ2; 0; 0; 0; 1; 0; 0; 0; 0�
ÿIaug

2 �ÿ1;ÿ1;ÿ2; 0; 0; 1; 0; 0; 0; 0; 0�

Table 2. AEs for the functions I2 and D2

AE Term Validity conditions

l� l l� � 0
m� m m� � ÿ�r�a � r�a �
l�2 �ÿ1 � l2�12 ga u u g
m�2 �1 ÿ m2�12 g u u g
s� sin�/� s� � ÿJ g g u u
c� cos�/� c� � ÿI g u g u
R� �R2� any integer

r�a �l � m� r�a � ÿ1ÿ na � la
r�b �l ÿ m� r�b � ÿ1ÿ nb � lb
z�a �1 � lm� z�a � ÿka
z�b �1 ÿ lm� z�b � ÿkb
a g $ even integer, u $ odd integer
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�Iaug
2 �ÿ1;ÿ1;ÿ2; 0; 0; 1; 2; 0; 0; 0; 0�

�Iaug
2 �ÿ1;ÿ1;ÿ2; 0; 0; 2; 1; 0; 0; 0; 0�

�
� kb

�
Iaug

2 �ÿ1;ÿ1;ÿ1; 0;ÿ1; 0; 2; 0; 0; 0; 0�

ÿIaug
2 �ÿ1;ÿ1;ÿ1; 0;ÿ1; 2; 0; 0; 0; 0; 0�

�
� ib � jb� �

�
ÿIaug

2 �ÿ1;ÿ1;ÿ1; 0; 0; 1; 1;ÿ2; 0; 0; 0�
ÿIaug

2 �ÿ1;ÿ1;ÿ1; 0; 0; 1; 1; 0;ÿ2; 0; 0�
�Iaug

2 �ÿ1;ÿ1;ÿ1; 0; 0; 1; 3; 0;ÿ2; 0; 0�
�Iaug

2 �ÿ1;ÿ1;ÿ1; 0; 0; 3; 1;ÿ2; 0; 0; 0�
�

� fb
�
Iaug

2 �0;ÿ1;ÿ1; 0; 0; 0; 1; 0; 0; 0; 0�
�Iaug

2 �0;ÿ1;ÿ1; 0; 0; 1; 0; 0; 0; 0; 0�
ÿIaug

2 �0;ÿ1;ÿ1; 0; 0; 1; 2; 0; 0; 0; 0�
ÿIaug

2 �0;ÿ1;ÿ1; 0; 0; 2; 1; 0; 0; 0; 0�
�
: �30�

All two-centre integrals that appear for a given molecule
can now be calculated in an appropriate LCS. Finally,
the resulting integrals have to be transferred into the
common MCS. This can be done by procedures similar
to those described in [38, 45]. The only task of such a
transformation is the rotation of the z-axis into a proper
direction. One Eulerian angle is arbitrary which leads to
an in®nite number of equivalent LCSs for a given A±B
pair. For a primitive electric integral the transformation
involves three distinct rotations: two for the
spherical harmonics employed in the two STOs and
one for the operator. In primitive magnetic integrals, an
additional rotation of the gradient operator must be
performed.

3.3 Derivatives with respect to normal coordinates

One of the possible applications of the integrals
discussed so far is the calculation of various expectation
values for electronic transitions including, for example,
natural and magnetic ®eld induced optical activity
tensors [30, 46]. If we want to go a step further and
include vibrational excitations [47, 48] or vibronic
coupling [49] we need derivatives of the primitive
integrals with respect to normal coordinates. The
simplest approach to solve this problem is the use of
numerical methods, for example, the application of ®nite
displacements. Our newly developed formalism o�ers an
alternative as it allows not only the evaluation of the
integrals themselves but also the direct analytical
determination of the necessary derivatives.

A normal coordinate qj can be formulated in terms of
3N Cartesian displacements n:

j �
X3N

i�1
ajini : �31�

The coe�cients aji result from a standard normal
coordinate analysis [48, 50]. The derivative with respect
to the jth normal coordinate is given by

@

@qj
�
X3N

i�1

@ni

@qj

@

@ni

�
X3N

i�1
aij

@

@ni
: �32�

In the derivation of Eq. (32) we used the assumption that
the aij matrix (with translations and rotations included)
is unitary. Because of Eq. (32) it is su�cient to
determine the derivatives with respect to Cartesian
displacements.

We consider the function Iaug
1 as a function of the

coordinates of centre A de®ned in the MCS, Iaug
1 �

Iaug
1 �Ax;Ay ;Az�. Using Eq. (32), the derivative of Iaug

1
with respect to the jth normal coordinate is

@

@qj
Iaug

1 �
X3N

i�1
aij

@

@ni
Iaug

1

� aAx;j@AxI
aug
1 � aAy ;j@AyI

aug
1

� aAz;j@AzI
aug
1 : �33�

Here, @Ax abbreviates @
@nAx

, where nAx
is the Cartesian

displacement of A in the x direction. Similarly we treat
Iaug

2 as Iaug
2 �Ax;Ay ;Az; Bx;By ;Bz�.

@

@qj
Iaug

2 �
X3N

i�1
aij

@

@ni
Iaug

2

� aAx;j@AxI
aug
2 � aAy ;j@AyI

aug
2

� aAz;j@AzI
aug
2 � aBx;j@BxI

aug
2

� aBy ;j@ByI
aug
2 � aBz;j@BzI

aug
2

� �aAx;j ÿ aBx;j�@AxI
aug
2

� �aAy ;j ÿ aBy ;j�@AyI
aug
2

� �aAz;j ÿ aBz;j�@AzI
aug
2 : �34�

In the last step we used @Ax � ÿ@Bx , @Ay � ÿ@By , and
@Az � ÿ@Bz in the MCS. Thus only three derivatives have
to be calculated and stored for any one- or two-centre
integral.

3.3.1 Derivatives of one-centre integrals

The derivatives of the function Iaug
1 follow directly from

Eq. (14).

@AxI
aug
1 � N

Xk;i;j
l;m;n

B�iÿ m�Aiÿmÿ1
x Ajÿn

y Akÿl
z

�R r� � T � l� m� n; fa � fb� �
�F�f�1 � I � m; f�2 � J � n�
� G�g�1 � K � l; g�2 � 1� I � J � m� n�
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@AyI
aug
1 �N

Xk;i;j
l;m;n

B�jÿ n�Aiÿm
x Ajÿnÿ1

y Akÿl
z

�R r� � T � l� m� n; fa � fb� �
�F�f�1 � I � m; f�2 � J � n�
� G�g�1 � K � l; g�2 � 1� I � J � m� n�

@AzI
aug
1 �N

Xk;i;j
l;m;n

B�k ÿ l�Aiÿm
x Ajÿn

y Akÿlÿ1
z

�R r� � T � l� m� n; fa � fb� �
�F�f�1 � I � m; f�2 � J � n�
� G�g�1 � K � l; g�2 � 1� I � J � m� n� :

By comparison with Eq. (10) we obtain:

@AxI
aug
1 � iIaug

1 �i! iÿ 1�
@AyI

aug
1 � jIaug

1 �j! jÿ 1� �35�
@AzI

aug
1 � kIaug

1 �k ! k ÿ 1� :
I1�i! iÿ 1� indicates that i is replaced by iÿ 1 and
the remaining arguments remain the same. Substitution
of Eq. (35) into Eqs. (15)±(17) leads to derivatives of
primitive magnetic integrals.

3.3.2 Derivatives of two-centre integrals

For the LCS it follows by de®nition that

@localAx
� @localBx

@localAy
� @localBy

�36�
@localAz

� ÿ @localBz
;

The su�x ``local'' indicates that we are dealing with a
LCS. Analogous to Eq. (35) we obtain

@localAx
Iaug

2 � iIaug
2 �i! iÿ 1�

@localAy
Iaug

2 � jIaug
2 �j! jÿ 1� �37�

@localAz
Iaug

2 � kIaug
2 �k ! k ÿ 1� ÿDaug

2 :

Daug
2 arises from the implicit dependence of the Mulliken

integrals A�k; q� and B�k; q; s� and of R
2

ÿ �1�g�ia���� on Az.

Daug
2 �na; la; ia; ja; ka; i; j; k; nb; lb; ib; jb; kb;R; fa; fb;Ax;

Ay ;Az;R�; r�a ; r
�
b ; z

�
a ; z

�
b ; l

�; m�; l�2 ; m
�
2 ; s

�; c��

�NP�ka; kb�
Xÿla�na�r�a

a

B Xnbÿlb�r�
b

b

BXka�z�a

ja

BXkb�z�
b

jb

B

�
Xi

i

BXj

k

BXk

g

BXg

�

B XI�J�i�k�m�
2

2

nm

B XI�J�i�k�l�
2

2

nl

B

� ÿ1� �nbÿlb�r�
b
ÿb�jb�

I�J�i�k�l�
2

2 ÿlb�nbÿnl�nm

� Ax
iÿiAy

jÿkAz
ÿg�k R

2

� �g�T�i�k�R�

� F �I � i� c�; J � k� s��
�
h
�1� T � g� i� k� R��

� A�a� b� �� ja � jb � 2nl � l�; q�
� B�ÿaÿ b� �� ja � jb ÿ L� N

� 2nm � m�; q; s�
ÿ fa � fb

2

R
2

A�1� a� b� �� ja � jb

� 2nl � l�; q�
� B�ÿaÿ b� �� ja � jb ÿ L� N

� 2nm � m�; q; s�
ÿ fa ÿ fb

2

R
2

A�a� b� �� ja � jb

� 2nl � l�; q�
� B�1ÿ aÿ b� �� ja � jb ÿ L� N

� 2nm � m�; q; s�
i
: �38�

The same rules apply to the AEs in Daug
2 as they apply to

Iaug
2 (Table 2). For the derivation of Eq. (38) we used

@localAz
� ÿ@R � ÿ fa � fb

2
@q �39�

and the fact that the derivatives of the Mulliken integrals
with respect to q are simply

@

@q
A�k; q� � ÿA�k � 1; q�

@

@q
B�k; q; s� � ÿsB�k � 1; q; s� : �40�

For the ®nal rotation of the derivative of a two-centre
integral from the LCS into the MCS we need not only
the derivatives of the integral but also the derivatives of
the rotation matrix. These can be written as

@MCSIaug
2 �

X
Rotation @LCSIaug

2

�
X

@LCSRotation
ÿ �

Iaug
2 : �41�

@LCS Rotation is easily obtained by standard proce-
dures.

3.4 Nuclear attraction integrals

Although not the primary goal of this work, nuclear
attraction integrals are most easily evaluated with the
concept of AEs. We obtain

vaj ÿ
ZA

rA
jvb

� �
� ÿZAI

aug
1 �i � 0; j � 0; k � 0; r� � ÿ1� �42�
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for one-centre nuclear attraction integrals and

vAj ÿ
ZA

rA
jvB

� �
� ÿZAI

aug
2 �i � 0; j � 0; k � 0;

R� � ÿ1; r�a � ÿ1; r�b � 0� �43�
vAj ÿ

ZB

rB
jvB

� �
� ÿZBI

aug
2 �i � 0; j � 0; k � 0;

R� � ÿ1; r�a � 0; r�b � ÿ1� �44�
for- two-centre nuclear attraction integrals. All AEs
which are not shown explicitly default to zero. Integrals
of the Laplacian and thereby kinetic energy integrals can
also be calculated with Iaug

1;2 . Unfortunately, the number
of primitive integrals involved becomes quite large in this
case and the methods cited in the Introduction are clearly
superior for the calculation of kinetic energy integrals.

4. Discussion

4.1 Numerical aspects

4.1.1 Tests for Iaug1 and Iaug2

The methods derived in the foregoing sections have been
implemented in the program eXcite using the For-
tran90 programming language. In order to check the
routines, a number of test calculations have been
performed for comparison with published results. Un-

fortunately, there are only few published results for
multipole integrals that give explicit values. However,
because of the general applicability of the two functions
Iaug

1 and Iaug
2 , we were able to check against some

overlap, angular momentum, and nuclear attraction
integrals (Table 3). eXcite has been compiled in two
versions, one with the standard double-precision word
length of 64 bits, and one with twice that word length. The
size of the binary code increases by only about 40%when
using a word length of 128 bits but the program becomes
about 8 times slower on aDECAlpha workstation. From
Table 3 we learn that the calculations which use 128 bit
double-precision variables reproduce precisely the over-
lap and 1=r-integrals found by Fernandez Rico et al. [20]
and the angular momentum integrals calculated by Hug
and Wagniere [34]. The di�erences between the values
which we obtained either with 64 or with 128 bit double-
precision variables are only minor. The respective values
coincide within 13±15 digits. To emphasize this result it
should be mentioned that

1. eXcite was programmed in the most straightfor-
ward manner with no special treatment of numeri-
cally critical routines.

2. The calculation of each integral in Table 3 employs a
linear combination of two to nine primitive integrals,
summing up the numerical errors of each primitive
integral.

We therefore conclude that the proposed method is of
high numerical stability.

Table 3. Some test calculations for the use of Iaug
1 and Iaug

2 in comparison to values from the literature. All values in atomic units. For the
64 bit values, the digits di�ering from the 128 bit value are underlined

Integral This work Literature

64 bita 128 bita

Overlaps and nuclear attraction integrals Ref. [20]

h3d;ma � 0j3d;mb � 0ib 0.12547638617814673 ´ 10)01 0.12547638617816214 ´ 10)01 0.125476386178162 ´ 10)01

h3d; jmaj � 1j3d; jmbj � 1ib )0.69911744322628290 ´ 10)02 )0.69911744322628676 ´ 10)02 )0.699117443226285 ´ 10)02

h3d; jmaj � 2j3d; jmbj � 2ib 0.11049650932977856 ´ 10)02 0.11049650932976334 ´ 10)02 0.110496509329763 ´ 10)02

h3d;ma � 0j ÿ Za=raj3d;mb � 0ic )0.48627794915883660 ´ 10�00 )0.48627794915885689 ´ 10�00 )0.486277949158857 ´ 10�00
h3d; jmaj � 1j ÿ Za=raj3d; jmbj � 1ic 0.26544856263463512 ´ 10�00 0.26544856263464321 ´ 10�00 0.265448562634643 ´ 10�00
h3d; jmaj � 2j ÿ Za=raj3d; jmbj � 2ic )0.41387530907966347 ´ 10)01 )0.41387530907973784 ´ 10)01 )0.413875309079738 ´ 10)01

h3d;ma � 0j ÿ Zb=rbj3d;mb � 0ic )0.86569711360155718 ´ 10)01 )0.86569711360165005 ´ 10)01 )0.865697113601649 ´ 10)01

h3d; jmaj � 1j ÿ Zb=rbj3d; jmbj � 1ic 0.39704646900043952 ´ 10)01 0.39704646900044243 ´ 10)01 0.397046469000443 ´ 10)01

h3d; jmaj � 2j ÿ Zb=rbj3d; jmbj � 2ic )0.53946660153848178 ´ 10)02 )0.53946660153853615 ´ 10)02 )0.539466601538536 ´ 10)02

Magnetic dipole integrals Ref. [34]

h2sC1jx@y ÿ y@xj2pC1y id )0.67370987419137907 ´ 10�00 )0.67370987419137894 ´ 10�00 )0.6737
h2pC1x jx@y ÿ y@xj2pC1y id )0.99999999999999989 ´ 10�01 )0.10000000000000000 ´ 10�01 )1.0000
h2pC1y jx@y ÿ y@xj2pC2x id 0.00000000000000010 ´ 10�00 0.00000000000000000 ´ 10�00 0.0000

h2sC1jx@y ÿ y@xj2pC2y id )0.18604145576148029 ´ 10�00 )0.18604145576148015 ´ 10�00 )0.1861
h2pC1y jx@y ÿ y@xj2pC2y id 0.65837181656139193 ´ 10)01 0.65837181656139083 ´ 10)01 0.0658

h2pC1y jx@y ÿ y@xj2pO2
y id )0.51628093954957016 ´ 10)01 )0.51628093954956813 ´ 10)01 )0.0516

h2pC1y jx@y ÿ y@xj2pO2
x id )0.52412472963185429 ´ 10)01 )0.52412472963185210 ´ 10)01 )0.0522

h2pC1y jx@y ÿ y@xj2pO2
y id 0.11583405450686264 ´ 10)01 0.11583405450686106 ´ 10)01 0.0116

aDouble-precision word length
b fa=6.5197, fb=2.0387, R=3.75
c fa=6.5197, fb=2.0387, R=3.75; the nuclear charges are Za � 35 and Zb � 17
d Integrals for glyoxal in a minimal valence STO basis. fC1 � fC2 � f1:625; fO2 � 2:275. Coordinates: C1: {1.43618429, 0.0, 0.0},
C1: {1.43618429, 0.0, 0.0}, and O2: {2.70229412, )2.01065800, 0.83336483}
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4.1.2 Tests for @Ax;y;z I
aug
2 : analytic derivatives

versus numerical derivatives

As an example for the use of Eqs. (37) and (38) we
studied the integral h3py jxzj3dxyi with Slater exponents
2.3561 and 6.5197 in its LCS with f2; 3; 4g as coordi-
nates for A at various inter atomic distances R (Table 4).
The analytical derivatives were calculated with Eq. (37).
The results were compared to numerical derivatives of
Iaug

2 found in the most fundamental way by direct
evaluation of the di�erential quotient with a ®nite
displacement of the Cartesian coordinates

@AxI
aug
2 � 1

D
Iaug

2 �Ax � D� ÿIaug
2 �Ax�

� �
@AyI

aug
2 � 1

D
Iaug

2 �Ay � D� ÿIaug
2 �Ay�

� � �45�

@AzI
aug
2 � 1

D
Iaug

2 �Rÿ D; Az � D� ÿIaug
2 �R; Az�

� �
with su�ciently small D.

The integral h3py jxzj3dxyi for R � 0:0 a.u. was calcu-
lated with the one-centre function Iaug1 . From the second
column of Table 4 we learn that the 64 bit and the 128
bit version of the program yield practically the same
value of the two-centre integral for an interatomic dis-
tance of R � 2:0 a.u. The di�erence increases for larger
as well as for smaller R but for all practical purposes it is
negligibly small. At R � 25 a.u., for example, the two
values coincide in only eight nonzero digits, but the
absolute di�erence is less than 10ÿ30 a.u.

The analytic derivatives show similar trends (Table 4,
central column), but the di�erence between the two word
lengths is no longer negligible. The numerical derivatives

have been calculated using various ®nite displacements D
of centre B that range from D � 0:1 to 10ÿ30 a.u. In Fig. 2
the logarithmic relative error, log[(numerical derivative
ÿ analytical derivative)/analytical derivative], has been
plotted against logD for some of the two-centre integrals
shown in Table 4. The plots that result for other inte-
grals are similar. With decreasing D the numerical
derivatives converge towards the analytical value. At a
certain point, however, the relative error starts to
increase again.

Table 4. An unnormalised integral and its derivatives for various
interatomic distances R. All values in atomic units. The digits in
which the 64 bit values di�er from the 128 bit values are underlined.

In the column for the numerical derivatives the digits di�ering from
the analytic values are overlined

R [a.u.] h3py jxzj3dxyia @Axh3py jxzj3dxyia

Analytical, Eqs. (37) and (38) Numerical, Eq. (45) )log D

0.0b 64 bit: 1.107391551149960 ´ 10)00 0.27684788778748998 ´ 10�00 0.27684788778747915 ´ 10�00 3
128 bit: 1.107391551149959 ´ 10)00 0.27684788778748980 ´ 10�00 0.27684788778748980 ´ 10�00 1, . . ., 16c

0.5 64 bit: 1.074880332905100 ´ 10)00 0.60184248724280209 ´ 10�00 0.60184237771210292 ´ 10�00 6
128 bit: 1.074880332905336 ´ 10)00 0.60184248724002855 ´ 10�00 0.60184248724002820 ´ 10�00 15

1.0 64 bit: 0.799575072849274 ´ 10)00 0.82863448843220899 ´ 10�00 0.82863457206983071 ´ 10�00 7
128 bit: 0.799575072849282 ´ 10)00 0.82863448843214731 ´ 10�00 0.8286344884321473�4 ´ 10�00 16

2.0 64 bit: 0.248023186957969 ´ 10)00 0.39911100454010934 ´ 10�00 0.39911102200917981 ´ 10�00 7
128 bit: 0.248023186957969 ´ 10)00 0.39911100454010168 ´ 10�00 0.3991110045401016�9 ´ 10�00 16

3.0 64 bit: 5.032281600899088 ´ 10)02 0.94261663714525712 ´ 10)01 0.94261659588923408 ´ 10)01 7
128 bit: 5.032281600899074 ´ 10)02 0.94261663714524067 ´ 10)01 0.9426166371452406�8 ´ 10)01 16

4.0 64 bit: 8.253124448397308 ´ 10)03 0.16587687439802254 ´ 10)01 0.16587704161630246 ´ 10)01 7
128 bit: 8.253124448398339 ´ 10)03 0.16587687439802685 ´ 10)01 0.16587687439802694 ´ 10)01 16

5.0 64 bit: 1.198420805761383 ´ 10)03 0.25046273743765256 ´ 10)02 0.25046289781754938 ´ 10)02 7
128 bit: 1.198420805761296 ´ 10)03 0.25046273743778760 ´ 10)02 0.25046273743778757 ´ 10)02 16

10.0 64 bit: 3.464670984979476 ´ 10)08 0.77519948952131252 ´ 10)07 0.77520382904779132 ´ 10)07 6
128 bit: 3.464670984986729 ´ 10)08 0.77519948952538339 ´ 10)07 0.77519948952538294 ´ 10)07 15

25.0 64 bit: 9.187009549920457 ´ 10)23 0.21248989391855453 ´ 10)21 0.21249781685337931 ´ 10)21 5
128 bit: 9.187009551872945 ´ 10)23 0.21248989373179528 ´ 10)21 0.21248989373179487 ´ 10)21 14

aWithout normalisation, fa = 2.3561, fb = 6.5197. The Cartesian coordinates of A are {2,3,4}
b The one-centre integral and its derivatives have been calculated using Eqs. (11) and (35)
c This numeric derivative does not seem to depend on the value of D

Fig. 2a, b Accuracy of Eq. (45) compared to the analytical solution
Eq. (37) as a function of D for the integrals in Table 4. Note that
both axes are logarithmic. a 128 bit double-precision variables and
b 64 bit double-precision variables
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The optimal D values and the corresponding numer-
ical derivatives are shown in the last two columns of
Table 4. In the numerically stable region, the relation
between relative error and D exhibits nearly linearly
decreasing behaviour in the double logarithmic plot
(Fig. 2). The slope of this part is fairly independent of R
and the word length. The numerical instability starts
earlier with decreasing D the larger R becomes. This is
not surprising as the integrals themselves approach zero.
The important point is that unlike the analytical results,
the word length in¯uences the accuracy of the numerical
derivatives by several orders of magnitude. Moreover,
the minimum relative errors are reached for di�erent Ds
depending on R and word length. Thus, one should
prefer the analytical procedure whenever possible.

4.2 Comparison to other methods

As mentioned earlier, a similar ansatz for the solution of
electric multipole integrals has been proposed by Carbo
and Besalu [38] and by Zheng and Zerner [39]. In the
latter approach, the primitive electric operator �i; j; k�O
and the Cartesian monomials �i; j; k�A of the spherical
harmonic in vA are both translated into centre B. These
translations are performed using master formulae, which
have to be known explicitly for each operator and each
orbital. After the translation, one is left with a linear
combination of overlap integrals of s-type orbitals in A
and orbitals with usually high angular momentum in B.
The functions proposed by Zheng and Zerner are
essentially special cases of the nonaugmented functions
I1 andI2.Master formulae are not needed in the present
derivation. The main problem with the use of master
formulae is that they are not invariant to rotations of the
coordinate system. For each LCS one has to ®nd new
master formulae. In the approach proposed here, the task
of master formulae is taken over by the

P B symbols. In
contrast to Zheng and Zerner but similar to Carbo and
Besalu [38] we do not translate �i; j; k�A. Carbo and
Besalu did not write the operators for two-centre integrals
in terms of bi-focal coordinates but applied them directly
to one of the orbitals. The main di�erence between their
solution and the one proposed here, besides the func-
tional form of the solutions, appears in the rotation of the
results from the LCS into the MCS.

Fernandez Rico et al. [20] developed recurrence
formulae for the calculation of two-centre one-electron
integrals that result from the one-electron Hamiltonian.
Their method involves the evaluation of in®nite sums or
sums of values close to zero depending on the values of
their �x; y� parameters. Neither such sums nor master
formulae are needed in the method presented in this
contribution.

5. Conclusion

A new method for the calculation of arbitrary electric
and magnetic multipole integrals has been developed.
Only two functions, Iaug

1 and Iaug
2 for one- and two-

centre integrals are needed for this purpose. Due to the
introduction of AEs, Iaug

1 and Iaug
2 are widely applica-

ble, as shown for the example of nuclear attraction
integrals. The use of AEs in particular allows a
completely analytical determination of the derivatives
of all the integrals mentioned with respect to atomic
displacements. Only one additional auxiliary function,
Daug

2 , is needed for this purpose. Iaug
1 , Iaug

2 and Daug
2

reduce to standard integrals which are well known and
broadly employed in integral evaluation with STOs.

The present approach does not involve the use of
master formulae. The operators are translated implicitly.
There is no translation of orbitals at all. The choice of
the origin is totally free for all integrals and derivatives.
Moreover, there are no in®nite sums involved, so we do
not need to worry about convergence radii. The method
was implemented in a Fortran90 code which is numeri-
cally stable. The numerical values obtained in test cal-
culations agree with those found in the literature for
some of the relevant integrals.

Possible ®elds of application include the treatment of
electronic as well as vibronic nonlinear spectroscopic
e�ects and studies of higher electric and magnetic
moments.
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Appendix

1 Basic integrals

The radial integral R is simply:

R�k; q� �
Z1

r�0
dr rk exp �ÿqr� � k!

qk�1 : �A1�

The solutions of the integrals over / and h are

F�m; n� �
Z2p

/�0

d/ cosm�/� sinm�/�

� F �m; n�; g�m� ^ g�n�
0; otherwise :

�
�A2�

G�m; n� �
Zp

h�0

dh cosm�h� sinm�h�

�
F �m;n�

2 ; g�m� ^ g�n�
G�m; n�; g�m� ^ u�n�

0; otherwise :

8><>: �A3�

In these equations, ^ denotes the Boolean ``and''. g is a
Boolean function yielding ``true'' for even integer
arguments (u 7! :g). F and G were taken from Ref. [39]:

F �m; n� :� 2p
�nÿ 1�!!�mÿ 1�!!
�n� m�!! �A4�
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G�m; n� :� 2n

n!

n!!�mÿ 1�!!
�n� m�!!

nÿ 1

2

� �
!

� �2
: �A5�

A particularly useful relation for programming is

F�m; n�G�m; n� 1� � F �m; n�G�m; n� 1� �A6�
which saves quite a few ``if'' statements.

2 The r- and r�r-operators
in elliptic bifocal coordinates

After some lengthy, but straightforward algebra, the
gradient operator with respect to the LCS depicted in
Fig. 1b reads:

r �

2lS cos�/�
l2ÿm2� �R @l � 2mS cos�/�

ÿl2�m2� �R @m ÿ 2 sin�/�
SR @/

2lS sin�/�
l2ÿm2� �R @l � 2mS sin�/�

ÿl2�m2� �R @m � 2 cos�/�
SR @/

2 1ÿl2� �m
ÿl2�m2� �R @l � 2l ÿ1�m2� �

ÿl2�m2� �R @m

0BBBBBBB@

1CCCCCCCA ; �A7�

where S �
�����������������
ÿ1� l2

p �������������
1ÿ m2
p

. The angular momentum
operator, r�r, with r de®ned with respect to B, aquires
the form:

l � i�h

ÿP sin�/�@l�P sin�/�@m�P 0 cos�/�@/

S lÿm� �

P cos�/�@lÿP cos�/�@m�P 0 sin�/�@/

S lÿm� �

ÿ@/

0BBBBBB@

1CCCCCCA ; �A8�

with P � �1ÿ m2 ÿ l2 � l2m2� and P 0 � �lÿ m�
l2mÿ lm2�. Although this operator seems to be rather
simple, it acquires quite a bit of length and complexity
when r is de®ned with respect to an origin outside the
line joining A and B. Therefore, we did not use Eq. (A8),
for the evaluation of magnetic two-centre integrals.
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